Preferred Device

NPN Silicon Epitaxial Transistor

This NPN Silicon Epitaxial Transistor is designed for use in low voltage, high current applications. The device is housed in the SOT-223 package, which is designed for medium power surface mount applications.

Features

- High Current: $I_C = 1.0 A$
- The SOT-223 package can be soldered using wave or reflow
- SOT-223 package ensures level mounting, resulting in improved thermal conduction, and allows visual inspection of soldered joints. The formed leads absorb thermal stress during soldering, eliminating the possibility of damage to the die
- The PNP Complement is BCP69T1
- Pb–Free Packages are Available

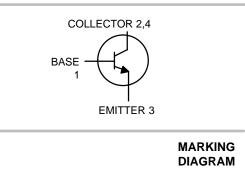
MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	20	Vdc
Collector-Base Voltage	V _{CBO}	25	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current	۱ _C	1.0	Adc
Total Power Dissipation @ $T_A = 25^{\circ}C$ (Note 1)	P _D	1.5	W
Derate above 25°C		12	mW/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to 150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient (Surface Mounted)	$R_{\theta JA}$	83.3	°C/W
Lead Temperature for Soldering, 0.0625 in from case	ΤL	260	°C
Time in Solder Bath		10	Sec

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


1. Device mounted on a glass epoxy printed circuit board 1.575 in. x 1.575 in. x 0.059 in.; mounting pad for the collector lead min. 0.93 sq. in.

ON Semiconductor®

http://onsemi.com

MEDIUM POWER NPN SILICON HIGH CURRENT TRANSISTOR SURFACE MOUNT

CA = Specific Device Code

- A = Assembly Location
- Y = Year
- W = Work Week

= Pb–Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
BCP68T1	SOT-223	1000/Tape & Reel
BCP68T1G	SOT-223 (Pb-Free)	1000/Tape & Reel
BCP68T3	SOT-223	4000/Tape & Reel
BCP68T3G	SOT–223 (Pb–Free)	4000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		•			
Collector–Emitter Breakdown Voltage ($I_C = 100 \ \mu Adc$, $I_E = 0$)	V _{(BR)CES}	25	-	_	Vdc
Collector-Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	20	_	-	Vdc
Emitter–Base Breakdown Voltage ($I_E = 10 \ \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	5.0	-	-	Vdc
Collector-Base Cutoff Current ($V_{CB} = 25$ Vdc, $I_E = 0$)	I _{CBO}	-	-	10	μAdc
Emitter–Base Cutoff Current ($V_{EB} = 5.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	-	-	10	μAdc
ON CHARACTERISTICS		·			
$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C} = 5.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \\ (I_{C} = 500 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \\ (I_{C} = 1.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc}) \end{array} $	h _{FE}	50 85 60		- 375 -	-
Collector–Emitter Saturation Voltage ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$)	V _{CE(sat)}	-	-	0.5	Vdc
Base-Emitter On Voltage (I _C = 1.0 Adc, V _{CE} = 1.0 Vdc)	V _{BE(on)}	-	-	1.0	Vdc
DYNAMIC CHARACTERISTICS					
Current–Gain – Bandwidth Product ($I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$)	f _T	-	60	-	MHz

TYPICAL ELECTRICAL CHARACTERISTICS

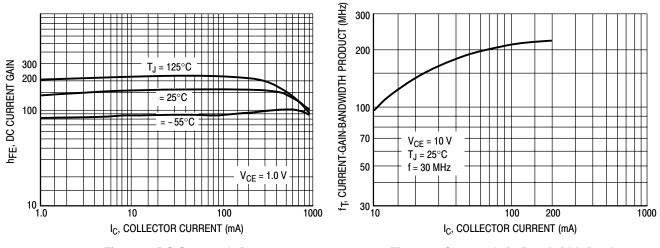
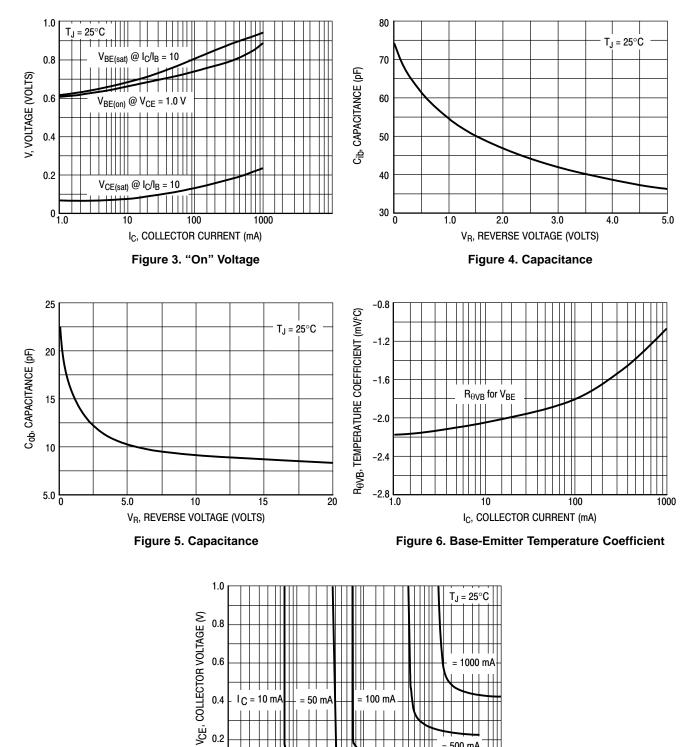



Figure 1. DC Current Gain

Figure 2. Current-Gain-Bandwidth Product

TYPICAL ELECTRICAL CHARACTERISTICS

= 100 mA

1.0

IB, BASE CURRENT (mA) Figure 7. Saturation Region

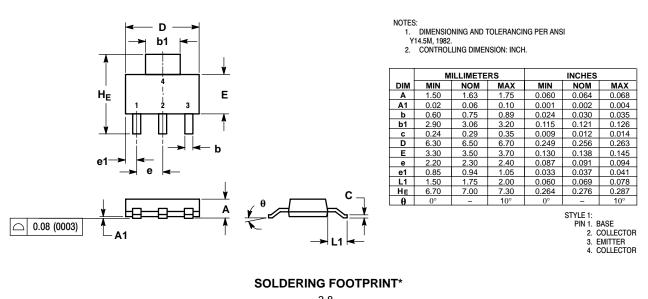
= 500 mA

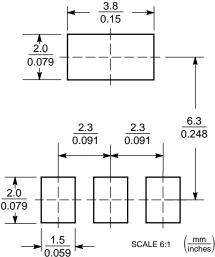
100

Ш

10

I C = 10 mA


0 L 0.01


= 50 mA

0.1

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE L

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal and such personal ingent or the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.